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ABSTRACT 
 

 Climate change introduces infrastructure flooding challenges, especially for coastal 

regions with low topographic relief.  More frequently occurring intense storms and sea level rise 

are two projected impacts of climate change that will lead to increased flooding risks.  These 

changing conditions make having the ability to forecast accurately potential flooding impacts to 

transportation infrastructure critical.  The Virginia Department of Transportation (VDOT) 

Hampton Roads District worked with Hassan Water Resources, PLC, a consulting firm, to create 

a flood forecasting model called the Regional River Severe Storm (R
2
S

2
) model for, among other 

purposes, flood warning applications.  The model was built for watersheds within the district that 

cover approximately 2,230 square miles and include 493 bridges and culverts. 

 

This report describes work by researchers at the University of Virginia to complete 

computational enhancements to the R
2
S

2
 model so that it might ultimately be implemented by 

VDOT for flood forecasting applications.  Specific project tasks were to (1) design, implement, 

and test software for automating rainfall forecast inputs from the National Weather Service; (2) 

speed up the model execution using a graphics processing unit (GPU); and (3) automate the 

visualization of model output through an online, map-based system and automate emails of flood 

impacted locations to decision makers within VDOT.   

 

Task 1 resulted in software for automating the access, download, and transform of 

rainfall forecast data produced by the National Weather Service High-Resolution Rapid Refresh 

(HRRR) model into the inputs required by the R
2
S

2
 model.  The heart of the R

2
S

2
 model, and the 

most time-consuming part of the model, is a high-resolution hydrodynamic model called the 

Two-dimensional Unsteady Flow (TUFLOW) model.  Task 2 resulted in speeding up the 

TUFLOW model by 50x from over 100 hr when the model is run using a central processing unit 

to just over 2 hr when using a GPU.  Finally, Task 3 resulted in software for automating tasks 

including extracting maximum water depth from the model output for a set of bridges, creating a 

Google Maps–based website showing impacted bridges, and having the system notify decision 

makers via email of bridges at risk of being overtopped.   

  

 The study recommends that VDOT’s Hampton Roads District Hydraulics Engineer 

undertake the following: (1) with the help of research staff at the Virginia Transportation 

Research Council, coordinate with the University of Virginia research team to begin using the 

R
2
S

2
 model to determine the accuracy of the output derived using the new GPU-based TUFLOW 

solver and begin the calibration process using real rainfall data and streamflow information; and 

(2) based on the information gathered, determine what additional R
2
S

2
 model modifications are 

required to make the model a fully automated flood forecasting system.  These modifications 

could include automating the data exchange between HEC-HMS and TUFLOW and making 

further enhancements to the workflow for visualization and notification of model results based 

on feedback from potential VDOT users.   
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INTRODUCTION 

 

Climate change introduces significant challenges for departments of transportation 

(Committee on Climate Change and U.S. Transportation, 2008).  In Virginia, the Virginia 

Department of Transportation (VDOT) Hampton Roads District is already facing these 

challenges due to sea level rise, storm surge, and more extreme weather events.  Increased 

flooding is one of the impacts to transportation infrastructure caused by these changing climatic 

conditions.  Severe weather results in flooding in coastal regions from both storm surge and 

precipitation runoff.  Sea level rise exacerbates the flooding problem by increasing the impact of 

storm surge and increasing tailwater elevations for streams and stormwater infrastructure 

designed to alleviate flooding from increased runoff. 

 

Having the ability to forecast potential impacts to transportation infrastructure accurately 

and quickly due to forecast weather events will become more critical as climate change 

continues.  VDOT’s Hampton Roads District has already started to address this issue by creating 

a flood warning system called the Regional River Severe Storm Model (R
2
S

2
).  The purpose of 

R
2
S

2
 is to serve as a planning tool to assist residency administrators in efficiently allocating scare 

resources to close roads and to assist first responders with accessing flood prone areas.  Future 

enhancements may provide flooding predictions directly to the public.  The system makes use of 

forecast rainfall conditions from the National Weather Service.  It then uses the rainfall forecasts 
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to drive a hydrology and hydraulics model that identifies specific locations where roads or 

bridges may flood in the 2,230 square mile watershed. 

 

The current implementation of R
2
S

2
 is computationally demanding and data-intensive.  

Some of the data translation steps in the current implementation, in particular the translation of 

forecast rainfall datasets to model input files, are currently done manually.  Flood warning is 

time sensitive, and so there is a desire to reduce the time from when forecasts are available to on-

the-ground projections of road closures.  This requires automation of data processing workflows 

to access, transform, and load rainfall forecasts into the model.  Also, the model itself is 

computationally demanding and there may be opportunities for speeding up the model execution 

time through adoption of high performance computing techniques and infrastructure. 

 

 

 

PURPOSE AND SCOPE 

 

The purpose of this study was to speed up the R
2
S

2
 execution so that it might ultimately 

be implemented by VDOT as a tool for flood forecasting applications.  This was accomplished as 

three primary tasks: (1) automating the workflow for accessing, transforming, and loading 

rainfall forecasts from federal data providers into R
2
S

2
; (2) investigating and providing solutions 

for speeding up the hydrology and hydraulic models behind R
2
S

2
 through parallel computing 

using graphic processing units (GPUs); and (3) demonstrating and providing methods for 

automatically sending road closure forecasts to decision makers. 

 

 

 

METHODS 

 

Study Area 

 

The study area is in the portion of the Chowan River basin that is within VDOT’s 

Hampton Roads District, which is about 2,230 square miles (Figure 1) and includes the 

Blackwater River, the Nottoway River, and the Meherrin River.  The study area includes 493 

georeferenced VDOT bridges and culverts.  Due to a high portion of the study area consisting of 

low-relief terrain, R
2
S

2
 uses a two-dimensional (2D) hydrodynamic commercial model called 

Two-dimensional Unsteady Flow (TUFLOW).  The area upstream of the project domain is 

modeled by using Hydrologic Engineering Center–Hydrologic Modeling System (HEC-HMS), a 

lumped hydrology model that is less computationally intensive, to generate the inflow boundary 

conditions for the study area.  Including these upstream watersheds, the project domain grows to 

about 4,240 square miles. 
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Figure 1. R

2
S

2
 Domain Composed of Study Area and 11 Subwatersheds That Contribute the Inflow to the 

Study Area Boundary 

 

 

Task 1: Forecast Data Automation and Preparation 

 

R
2
S

2
 uses real-time and forecast products for rainfall and streamflow conditions.  Prior to 

this study, these data were manually downloaded, reformatted, and then manually loaded into the 

modeling system.  In this study, these procedures to collect and process the rainfall data were 

automated.   

 

Prior to completing this workflow automation step, the research team reviewed the 

current R
2
S

2
 implementation to understand how input files are obtained and reformatted for use 

by the model.  Then the research team created a copy of the model at the University of Virginia 

(UVA) to use the university computational resources for creating the workflow tools. 

 

TUFLOW and HEC-HMS require input rainfall data in different formats.  TUFLOW has 

three approaches for applying the rainfall directly to the computational cells: (1) polygons 

covering multiple cells are assigned a rainfall time series (used in the original model provided); 

(2) gridded rainfall is created as ASCII files for each time step or as one NetCDF file (recently 

available through the updated TUFLOW model); and (3) a rainfall control file that allows the 



4 

 

user to specify point time series over the model and specify how the rainfall is interpolated to the 

model cells.  HEC-HMS uses a rainfall time series for each basin stored in a DSS file as an input 

for the model. 

 

 There are several available forecast datasets available from the federal government.  

These datasets include (1) the High-Resolution Rapid Refresh (HRRR), a higher-resolution nest 

inside the hourly updated Rapid Refresh (RAP) provided by the National Oceanic and 

Atmospheric Administration (NOAA) and the National Center for Environmental Prediction 

(NCEP), (2) the North American Mesoscale Forecast System (NAM), also provided by NCEP; 

and (3) the National Digital Forecast Database (NDFD), provided by the National Weather 

Service.  These forecast datasets were compared in terms of their spatial resolution, temporal 

resolution, and model cycle in order to determine which of these datasets would be the best for 

use within R
2
S

2
.  Once this determination was made, then software was built to automate the 

workflow of downloading and reformatting the forecast rainfall data to meet the requirements of 

the different parts of R
2
S

2
. 

 

 

Task 2: Speeding Up R
2
S

2
 Execution 

 

R
2
S

2
 consists of processing many input files for the TUFLOW model, running HMS to 

establish boundary conditions for TUFLOW, and processing output files from TUFLOW to 

determine inundated bridges and culverts (Figure 2).  Within this overall workflow, TUFLOW is 

the bottleneck in terms of workflow execution time.  The original TUFLOW model in R
2
S

2
 used 

a central processing unit (CPU) for computation and took more than 3 days to execute.  This is 

due to the data and computational demands of using a 2D hydrodynamic model at the scale 

required for predicting flooding of bridge and culvert infrastructure.  Thus, the objective of this 

task was to focus on speeding up the TUFLOW model execution.  The use of multiple CPUs and 

GPUs has been investigated as a means of speeding up the model execution time for 2D 

hydrodynamic models (Kalyanapu et al., 2012; Brodtkorb et al., 2012; Rostrup and Sterck, 2010; 

Castro et al., 2011; Lacasta et al., 2013; Sanders et al., 2010; Garcia et al., 2015).  Using CPU 

clusters is expensive and requires continuous maintenance (Vacondio et al., 2014).  Using GPUs 

offers the performance of smaller clusters at a much lower cost (Jacobsen et al., 2010).  

Therefore, using GPUs was investigated for speeding up the TUFLOW model. 

 

TUFLOW comes with a GPU Module for speeding up model execution.  The research 

team explored the use of both UVA’s computational resources and commercial clouds such as 

Amazon Web Services (AWS) for providing GPU computational resources.  Given the event-

based nature of flood warning systems, which require no computational resources between 

extreme events (other than for testing and development), the cloud computing paradigm of 

renting computational and storage resources by the hour may be an attractive option from a cost 

perspective.  For this reason, testing and development using cloud infrastructures was a top 

priority.  To implement this step, the TUFLOW model was updated to run with the latest version 

of the TUFLOW GPU Module.   
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Figure 2. R

2
S

2
 Workflow   

 

TUFLOW’s GPU Module is a powerful solver that is built into the TUFLOW software.  

The GPU Module uses an explicit solver which is different than the CPU TUFLOW solver used 

in the original R
2
S

2
 model, TUFLOW Classic, which uses an implicit solver.  A GPU has 

substantial parallel computing ability that can be used to run large 2D hydrodynamic models 

from 20 to 100 times faster than using a CPU (Huxley and Syme, 2016; Garcia et al., 2015).  

Using the power of the modern GPUs, very large models with fine grid resolution can be run 

within a more useful timeframe for flood warning scenarios. 

 

The UVA Hydroinformatics Lab has a workstation with a modest GPU, shown as M1 in 

Table 1.  The Viz Lab, a facility for UVA students, staff, and faculty to explore and investigate 

the power of visualization in research and education, has four powerful workstations that include 

GPUs.  The Escher, M2 in Table 1, is a high-end graphics workstation with 64 GB RAM and 

two NVidia GeForce Titan Graphics cards and is the most powerful workstation in the facility.  

The research team used M1 and M2 to investigate the effect of using a powerful GPU, M2, 

versus a modest one, M1 to speed up the TUFLOW model (Table 1). 
 

Table 1. Local Computers With GPUs Used to Investigate TUFLOW Model Execution Times 

ID Type CPU 
RAM 

(GB) 
GPU GPU RAM 

M1 Desktop Dell 

OptiPlex 990 

3.40 GHz, 4 

Core(s) 

16 NVIDIA Quadro K2000 2.00 GB, 384 SMX CUDA 

parallel processing cores 

M2 Desktop Viz Lab 

ESCHER 

3.20GHz, 3201 

Mhz, 6 Core(s) 

64 Two units of NVIDIA 

GeForce GTX TITAN 

6.00 GB, 2688 CUDA 

parallel processing cores for 

each 

GPU = graphics processing unit; CPU = central processing unit. 
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The Amazon Elastic Compute Cloud (Amazon EC2) is part of AWS, a leading 

commercial cloud provider, and is designed to make web-scale cloud computing easier for 

developers.  There are several types of the EC2 instance that are each designed for specific 

purposes.  For GPU-based computations, AWS offers G2 instance types.  G2 instances provide 

powerful machines ideal for many applications including computational fluid dynamics (Table 

2).  Therefore, the G2 instances were used in this analysis.   
 

Table 2. Comparison Between G2 EC2 Instances Performance and Cost 

EC2 Instance Model GPUs vCPU Memory (GiB) GPU Memory Storage (GB) Hourly Fee 

G2 
g2.2xlarge 1 8 15 4 (GB) SSD 1 x 60 $0.767 

g2.8xlarge 4 32 60 16 (GB) SSD 2 x 120 $2.878 

GPU = graphics processing unit; vCPU = virtual central processing unit 

 

 

Task 3: Post-processing and Automating Model Output Dissemination 

 

The TUFLOW model computes the maximum water level at each computational cell 

within the study area throughout the simulation duration.  By use of these maximum water levels 

and the VDOT bridge locations, a post-processing workflow was created to automate sending an 

email with the flooded bridges location and generate a visualization for the flooded bridge 

locations.  Web resources such as Google Maps and Geosheets were used to provide a real-time 

visualization for the flooded bridges in the Hampton Roads District.  Google Maps has the 

capability to generate a simple visualization of uploaded KMZ files, which is a quick and simple 

method to visualize the flooded bridge locations.  Geosheets, an add-on to Google Sheets, has 

more advanced visualization capabilities than using Google Maps directly without modification.  

Geosheets can visualize location data with specified attributes provided in a Google sheet.  Using 

the capabilities of the Google API and Geosheet in the post-processing workflow, advanced real-

time visualization of the flooded bridge locations can be generated.   

 

 

 

RESULTS AND DISCUSSION 

 

Task 1: Forecast Data Automation and Preparation 

 

After comparing the spatial resolution, temporal resolution, and model cycle of each 

dataset (Table 3), it was concluded that HRRR was the best choice to implement in R
2
S

2
.  HRRR 

is a weather prediction system composed of a numerical forecast model and an 

analysis/assimilation system to initialize the model.  HRRR is a higher-resolution model nested 

inside the hourly updated RAP data.  Although RAP can provide upper-level analyses and short-

range forecasts, HRRR is best used to examine surface and near-surface parameters, such as 

surface precipitation.  The HRRR model is run every hour of the day and forecasts out to 18 hr 

on a 1-hr time-step for each cycle.  It provides a surface total precipitation product in units of 

millimeters of precipitation depth at a horizontal resolution of 3 km (NOAA, 2012).  Surface 

total precipitation can be accessed as gridded data with dimensions of longitude, latitude, and 

time.  Longitude and latitude are provided in the World Geodetic System (WGS) 1984 

coordinate system, and time is in units of decimal days such as 1-1-1 00:00:0.0 (NOAA, 2017a).  

HRRR data are distributed as a part of the NOAA Operational Model Archive and Distribution 
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System (NOMADS) project.  NOMADS is a network of data servers that uses Open Source 

Project for a Network Data Access Protocol (OPeNDAP) as the framework used to distribute 

real-time HRRR data (NOAA, 2017a). 

 

An automated workflow was created to retrieve the real-time and predicted forecast 

rainfall data from the HRRR database and prepare them as an input to the hydrologic models in 

the R
2
S

2
 (Figure 3).  Doing so reduces human translation errors and decreases the time between 

when new rainfall forecasts are available and when the R
2
S

2
 model produces forecasts.   

 

Table 3. Comparison of Available Forecast Datasets 

Dataset Data Provider Relevant Data Product 

Spatial 

Resolution 

(km) 

Temporal 

Resolution 

(hours) 

Forecast 

Hours 

Model 

Cycle 

HRRR NCEP Surface total precipitation 3 1 18 24/day 

RAP NCEP Surface total precipitation 13 1 18 24/day 

NDFD NWS Quantitative precipitation forecast 5 6 72 8/day 

NAM NCEP Surface total precipitation 12 1 36 4/day 

Source: NOAA (2017b). 

 

   

 
Figure 3. Forecast Data Workflow From Source, HRRR, to R

2
S

2
 Hydrologic Models 
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Figure 3 shows the workflow for downloading and reformatting the forecast rainfall data.  

Pydap, a pure Python library implementing the OPeNDAP, is used to retrieve the desired 

forecast data for the study area.  The automated workflow consists of three main parts: (1) access 

the latest available forecast data from the HRRR database, (2) retrieve the forecast surface total 

precipitation with a horizontal resolution of 3 km x 3 km in WGS 1984 coordinate system, and 

(3) reformat the forecast data for model input in the NAD83 UTM 18N projected coordinate 

system.  These rainfall data are reformatted in two ways: gridded rainfall data for TUFLOW 

(Figure 4) and subwatershed time series for HEC-HMS.   

 

To include these direct rainfall data in TUFLOW, an event file, TEF, was created to 

define the storm event properties.  For example, using the new TEF, the user can run the model 

for Super Storm Sandy (Sandy event) using Recorded data (historical rainfall data if available) 

and Forecast data (forecast rainfall data). 

 

 
Figure 4. Sample of Forecast Rainfall Data Within a NetCDF File at Time 4 Hours 

 

 

Task 2: Speeding Up the R
2
S

2
 Execution 

 

In this task, the original TUFLOW model was enhanced and a new version was created 

for the speeding up purposes.  Both the original model (OM) and updated model run scenarios 

were based on the Hurricane Sandy storm event that was provided as part of the OM for testing 

purposes. 

 

Table 4 includes the significant changes between the original TUFLOW model used in 

R
2
S

2
 and the updated model created through this study.  The OM ran through the Surface-water 

Model System (SMS) that uses an older TUFLOW release (2013-12-AC).  The new model is run 

outside the SMS and is therefore capable of using the latest TUFLOW release (2016-03-AA), 

which has the capability of using gridded rainfall data as a direct rainfall to the model.  The OM 

used SMS to prepare input data; the new model uses ArcMap to prepare these data.  In the OM, 
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the TUFLOW Control File (TCF) was generated automatically by SMS; now, the TCF is created 

outside of SMS and was enhanced to include a TUFLOW Event File (TEF) and a TUFLOW Log 

File (TLF).  The TEF was created to include the several event scenarios that the model could run.  

The TLF was created to organize the running scenarios.  The current TUFLOW model consists 

of a Cartesian grid with a cell size of 50 m by 50 m.  Using the TLF, finer Cartesian grids with 

longer computational duration or coarser Cartesian grids with shorter computational duration and 

a different time step can be implemented in the future to assess the effect of the model resolution 

and time step on the model output.  The TUFLOW manual states that the time step is typically in 

the range of one-half to one-fifth of the cell size.  Based on this recommendation, the updated 

model time step has been changed to 15 sec rather than 10 sec as this may have a corresponding 

reduction in the execution time.  By default, the TUFLOW model output is generated in a cell 

size that is one-half the cell size of the input data.  First, the model outputs the data in the 

original cell size of the input data; second, the model does an internal interpolation to output the 

data in a smaller cell size.  In the new model, the output has the same cell size as the input as this 

may have a corresponding reduction in the execution time too.   

 
Table 4. Comparison of Model Enhancements 

Model Specification Original Model  Updated Model  

Input data preparation  SMS ArcMap—GIS 

TUFLOW Release 2013-12-AC 2016-03-AA 

Output Cell Size 25 m 50 m 

Time-step 10 sec 15 sec 

TUFLOW Control File Auto-generated from SMS Created directly outside of SMS 

Run Method Run through SMS Run directly using batch files 

 

Table 5 summarizes the results of the five TUFLOW model scenarios using M1 and M2 

machines (Table 1).  The OM scenario represents running the OM obtained from VDOT.  The 

OM took 105.7 hr to execute.  Four updated model scenarios were run.  The R1 scenario 

represents executing the updated model with a CPU and by using the same parameters of the 

OM.  This scenario took 120 hr to execute, which is slightly longer than the OM running time.  

The R2 scenario represents running the new model with two GPUs and keeping the same 

parameters as the OM.  This scenario took 2.2 hr to execute, which is a significant reduction in 

the model execution time by nearly 50x of the OM execution time (105.7 hr).  The R3 scenario 

represents executing the updated model with a larger time step (15 sec) and generated output cell 

size (50 m), with two GPUs provided by M2.  This scenario also took 2.2 hr to execute, 

indicating that there is no significant increase in execution time caused by these changes in the 

time step and output cell size.  The R4 scenario represents the same setup as the R3 scenario, but 

executing the model with the more modest GPU provided by M1.  This scenario took 5 times 

longer to execute (11.5 hr) compared to the R3 scenario.  This indicates the quality of the GPU is 

a significant factor in the model execution time.   
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Table 5. Comparison of New Versus Original Model 

Model Specification 
Original Model New Model 

OM R1 R2 R3 R4 

Machine M1 M1 M2 M2 M1 

TUFLOW Release 2013-12-AC 2016-03-AA 2016-03-AA 2016-03-AA 2016-03-AA 

Precision Single  Single Single Single Single 

Time-step (sec) 10 10 10 15 15 

Output Cell Size (m) 25 25 25 50 50 

Processing Units CPU CPU GPU GPU GPU 

No. of GPUs - - 2 2 1 

Running Time (hr) 105.7 120 2.2 2.2 11.51 

The difference in each scenario is in bold.  

OM = original model; R1 = run scenario 1; R2 = run scenario 2; R3 = run scenario 3; R4 = run scenario 4; CPU = 

central processing unit; GPU = graphics processing unit. 

 

The following describes the analysis of differences in the model results when using the 

updated TUFLOW version and when using a GPU instead of a CPU solver.  Figure 5 provides 

the fraction of computational cells that have differences in the maximum water level (Max.  WL) 

of the OM compared to the updated version of TUFLOW (R1).  These results show that although 

some cells have differences in water levels up to 1.25 m (4 ft), 92% of the computational cells 

differ by less than 0.5 m (1.6 ft).   

 

 
Figure 5. Differences Between Maximum Water Level Generated From OM and R1.  OM = original model; 

R1 = run scenario 1. 

 

Figure 6 provides the differences in Max. WL generated from the OM and the updated 

model run using GPU solvers (R2).  This result shows that differences in the water levels are up 

to 2.75 m (9 ft), but 80% of the computational cells have differences in the maximum water level 

less than 0.5 m (1.6 ft).  Figure 7 provides the differences in Max. WL generated from the 

updated model run using the CPU solver (R1) and the updated model run using the GPU solvers 
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(R2).  This result shows that differences in the water levels are up to 2.5 m (8 ft), but again, 92% 

of the computational cells have differences in the maximum water level less than 0.5 m (1.6 ft).  

From Figures 6 and 7, it is expected that the two scenarios will produce slightly different results, 

but explicit solvers using GPUs are less numerically stable compared to implicit solvers using 

CPUs, so the differences can be large and should be closely checked for consistency. 

 

TUFLOW’s GPU Module is able to use multiple GPUs in parallel.  A test was conducted 

to determine how increasing the number of GPUs influenced model execution time.  As 

expected, running the model by using different numbers of GPUs produced the same output 

results (i.e., no differences in the maximum water levels).  Figure 8 provides the results of this 

test using the updated model and the AWS G2 instances.  By using the g2.8xlarge instance with 

one GPU, the new model takes 4 hr to run.  By using the g2.8xlarge instance and increasing the 

number of GPUs, the optimum execution time is 2.5 hr when three GPUs are used.  Using four 

GPUs on this instance actually increases the execution time compared to using three, which is a 

known tradeoff caused by data transfers between GPU units. 
 

 
Figure 6. Differences Between Maximum Water Level Generated From OM and R2.  OM = original model; 

R2 = run scenario 2. 
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Figure 7. Differences Between Maximum Water Level Generated From R1 and R2.  R1 = run scenario 1; R2 

=run scenario 2. 

 

 
Figure 8. Running TUFLOW Model Through AWS Instances With Different Numbers of GPUs.  AWS = 

Amazon web services; GPUs = graphics processing units. 

 

The optimum execution time on AWS G2 instance, 2.5 hr using three GPUs, is slightly 

higher than the optimum execution time on M2 machine available at UVA.  In addition, the M2 

machine used only two GPUs whereas the AWS G2 instance used three.  The M2 GPUs are 
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more powerful than the AWS G2 instance GPUs, which accounts for this difference.  AWS 

recently released new P2 instances (Table 6) that have more powerful GPUs, and these machines 

are expected to provide additional model speedup in AWS.  Future work could explore speeding 

up using the newly released P2 EC2 instances. 

 
Table 6. Comparison Between P2 EC2 Instances Performance and Cost 

EC2 

Instance 
Model GPUs vCPU 

Memory 

(GiB) 

GPU 

Memory 
Storage (GB) 

Hourly 

Fee 

P2 p2.xlarge 1 4 61 12   (GiB) EBS $1.084 

p2.8xlarge 8 32 488 96   (GiB) EBS $8.672 

p2.16xlarge 16 64 732 192 (GiB) EBS $17.344 

 

 

Task 3: Post-processing and Automating Model Output Dissemination 

 

The created workflow uses different Python libraries such as Geospatial Data Abstraction 

(GDAL/OGR), Simple KML library (SIMPLEKML), and email library to generate the 

visualization of the flooded bridge locations and send automatic email with flooded bridges to 

the decision makers (Figure 9).  Figure 9 shows the workflow and its products that could be used 

with ArcMap, Google Maps, and Google Earth for visualization.  This workflow can also 

generate an online, map-based visualization in real time using Geosheets.  There are three 

products for visualization that can be generated from this workflow: (1) a new shapefile that 

includes just the flooded bridges; (2) a KMZ file that includes just the flooded bridges that could 

be used to visualize the results through Google Maps and/or Google Earth besides the ability to 

sending this file to decision makers through email; and (3) a dynamic and real-time visualization 

on Geosheets created by automatically uploading the bridges with their flooded status to Google 

Doc using Google API.  Figure 10 shows an example for uploading the generated KMZ file from 

the workflow to Google Maps and how the flooded bridges show up with corresponding 

information.  Figure 11 shows an example of an advanced visualization for the flooded bridges 

directly on the Geosheets permanent URL once the workflow runs.  This visualization shows the 

bridges as being not overtopped (green), nearly overtopped (yellow), and overtopped (red) from 

forecast rain events. 
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Figure 9. Post-processing Workflow for Producing Different Visualization Resources  
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Figure 10. Visualizing the Flooded Bridges Location Using the Generated KMZ File and Google Maps.  https://goo.gl/j4aQ7q.  
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Figure 11. Real-Time Visualization With Permanent URL for Visualizing the Flooded Bridges Location Using Geosheets.  

https://www.geosheets.com/map/s:Lo6Wq0Jl/Currrent-Flooded-Bridges-in-The-Hampton-Roads-District.

https://www.geosheets.com/map/s:Lo6Wq0Jl/Currrent-Flooded-Bridges-in-The-Hampton-Roads-District
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CONCLUSIONS 

 

 This study resulted in the following computational enhancements to the R
2
S

2
 model: 

 

 New software now exists for automating the data gathering and processing steps 

required to create forecasted rainfall inputs to the model.  With the use of this new 

software, it is now possible to obtain and process automatically the latest rainfall 

forecast data from federal data providers. 

 

 A new approach has been identified that uses multiple GPUs in parallel to execute the 

hydrodynamic model at the core of R
2
S

2
.  Using this new approach, a 50x speedup 

was achieved, reducing the model execution time from over 100 hr to just over 2 hr.  

 

 A new prototype visualization tool was created to allow for real-time dissemination of 

model results to end-users and decision makers.  This online, map-based visualization 

shows bridge inundation conditions based on the model output and can be generated 

in a semi-automated fashion when new model results become available.  

 

 

 

RECOMMENDATIONS 

 

1. VDOT’s Hampton Roads District Hydraulics Engineer, with the help of research staff at the 

Virginia Transportation Research Council, should coordinate with the UVA research team to 

begin using the R
2
S

2 
model to determine the accuracy of the output derived using the new 

GPU-based TUFLOW solver and begin the calibration process using real rainfall data and 

streamflow information. 

 

2. Based on information gained when implementing Recommendation 1, VDOT’s Hampton 

Roads District Hydraulics Engineer should determine what additional R
2
S

2 
model 

modifications are required to make the model a fully automated flood forecasting system.  

These modifications could include (1) automating the data exchange between HEC-HMS and 

TUFLOW, and (2) making further enhancements to the workflow for visualization and 

notification of model results based on feedback from potential VDOT users.  

 

 

 

BENEFITS AND IMPLEMENTATION 

 

Benefits 

  

With regard to Recommendation 1, the benefit will be a better understanding of the 

current accuracy of the model and adjustments to the model made through model calibration 

could improve its accuracy.  Knowing the accuracy of the model and improving its accuracy to 

the extent possible with current data inputs will benefit the agency as they use the tool for 

decision support.  
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With regard to Recommendation 2, the benefit will be a clearer understanding of next 

steps to be taken that will improve the accuracy and utility of the tool.  This will aid in directing 

further resources to targeted priority areas that most improve the tools adoption within the 

agency for decision support before, during, and following extreme weather events.  

 

 

Implementation 

 

  VDOT’s Hampton Roads Deputy District Administrator and VDOT’s Hampton Roads 

District Hydraulics Engineer met with the UVA research team to discuss the plan for evaluating 

the model output for upcoming precipitation events as suggested in Recommendation 1.  Both 

expressed interest in further refinements to the model to enhance its potential operational value 

for the district.  These specific enhancements will be identified as the model begins being used 

during the 2017 summer and fall seasons (Atlantic hurricane season) and would move a fully 

automated flood forecasting system to one that could be used for operational decisions about 

road and bridge closures in response to expected flood events.   
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